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Abstract. -The variational approach to the heat conduction phenomenon is considered. The use of the 
variational principle formulated for the system of equations describing the phenomenon, i.e. for Fourier’s 
law and the law of energy conservation is discussed. 

The description of the phenomenon is completeted by a balance equation for boundary conditions 
discussed in the generalized form. This form also makes possible the consideration of nonlinear boundary 
conditions. 

The transient. one-dimensional temperature distribution is determined for plates with radiative and 
convective heat transfer on the boundary. 
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heat flow vector with com- 
ponents Hi(i = 1,2,3); 
integrals defined by equations 
(40) and (41), respectively; 
conductivity of the body A; 
dimensionless number de- 
fined by equation (52); 
dimensionless number de- 
fined by equations (53) and 

(54); 
normal unit vector with com- 
ponents n,(i = 1,2,3) of sur- 
face B taken as positive out- 
wardly; 
generalized coordinates de- 
fined in equations (17) and 
(18), respectively; 
generalized coordinates de- 
fined in equation (33); 
generalized coordinates de- 
fined in equation (38); 
generalized coordinate equal 
to the temperature of the face 
of the slab when q. = 1; 
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c,(i = 0,1,..,4), 

‘1, 

6, 

Subscripts 

L 

i. 

generalized forces defined by 
equations (25) and (28), re- 
spectively; 
constants defined in equations 
(31) and (32); 
x/R, dimensionless coordi- 
nate; 
temperature considered as an 
increment of the temperature 
of the body over the absolute 
temperature T, which cor- 
responds to an equilibrium 
state; 
root of the characteristic 
equation (64); 
kti’cR2, dimensionless time; 
instant of time when q,, = 1; 
potential of the heat flux field 
defined by equation (14) or 
equation (16); 
constant in equation (39); 
dimensionless constant de- 
fined by equation (61). 

number of subsurfaces Bb of 
the boundary B; 
describes the direction of the 
vector coordinate in a rec- 
tangular Cartesian coordinate 
system, and has the range bf 
the integers 1,2,3; 
number of the generalized 
coordinates pP : 
number of the generalized 
coordinates q, and also index 
of the power in equation (38); 
are used to distinguish the 
generalized coordinates p and 
q, respectively; 
subscript of the subsurface B. 

For subscripts the summation convention will 
be used. 

r = T(0, Gilli, t), function prescribed on the 
boundary B: 

rr, r2, functions given by equations 
(31) and (32) respectively; 

6D*, Svd”, variational invariants defined 
by equations (11) and (8), 
respectively. 

1. INTRODUCTION 

R semi-thickness of the slab; THE ATTENTION of several investigators has been 
t. time: focused on the variational approach to the heat 
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U, 

u, 

MO’ 

Us’ ug, 

I! y.. 

w = w(x, t), 

X, 

Z, 

Zt’ 
z za, 

4 A 

arbitrary reference tem- 
perature; 
initial temperature of the slab; 
temperature of the ambient 
at the face of the slab; 
temperature of the body to 
which thermal radiation is 
exposed the face of the con- 
sidered slab; 
(U - uo)/(u, - u,),dimension- 
less initial temperature in 
equation (55); 
(Q/T), dimensionless temper- 
ature; 
dimensionless quantity de- 
fined by equation (60); 
To/T, dimensionless initial 
temperature; 
TjT, TJT, dimensionless tem- 
peratures of the environment; 
thermal potential functions 
defined by equations (10) and 
(20), respectively; 
prescribed heat source in the 
body A; 
coordinate vector with com- 
ponents x,(i = L2.3); 
(qr - u,)I(u, - u,), dimen- 
sionless temperature in equa- 
tion (55): 

(4, - uO)/(uII - u,); 
quantities defined by equa- 
tions (63) and (59) respect- 
ively ; 
constants in equation (39); 
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conduction problem, [l+ 6 and others]. The 
calculational methods based on this approach 
are promising and permit us to obtain approxi- 
mate solutions of the problems which have not 
yet been solved. These methods permit us, at 
the same time, to simplify the numerical calcu- 
lations and allow us to save time when they are 
adapted to the construction of the numerical 
calculations on the computer. But, on the other 
hand, the foundations of the variational prin- 
ciples for heat conduction are not yet clear [4]. 
Thus appeared in the literature the “restricted-” 
or “quasi-” variational principles for Fourier’s 
law or for the law of energy conservation, 
alternatively. Then the heat conduction pheno- 
menon was described by a variational principle 
and a differential equation considered as a 
constraint. 

based on an idea of a system of restricted varia- 
tional principles [7] formulated for the system 
of differential equations describing the pheno- 
menon (governing equations), i.e. for Fourier’s 
law and the energy conservation law. Such an 

In this paper is presented the variational 
description of the heat conduction problem 

principles is illustrated by an example of the 
heating of a slab with radiative and convective 
heat transfer on the boundary. The results 
obtained in the form of formulae and graphs are 
an approximate solution of the problem con- 
sidered. The accurateness of the method is veri- 
tied for the particular limiting cases and is 
compared with others which exist in the litera- 
ture, with approximate results. 

2. PROBLEM FORMULATION 

Let us consider the problem of transient heat 
conduction in an isotropic body A with thermal 
parameters: k(x)-conductivity, and c(x)--capa- 
city per unit volume. In the body A is prescribed 
heat source w = w(x, t) where x denotes co- 
ordinate vector with components xi (i = 1,2,3), 
and t-time. On the boundary B of the body A is 
prescribed the function 

approach conducted here for two possible 
variants of the systems of governing equations 
gives a basis for putting in order some of the 
particular forms of the variational principle 
for the heat conduction problem. There is also 
shown here how systems of variational principles 
can be reduced to the forms described in the 
literature. 

2,3) of surface B taken as positive outwardly. 

r(0, G,n,, t) = 0 on surface B 

where f3 denotes temperature, G-heat 
vector with components Gi (i = 1,2,3), 
normal unit vector with components ni (i 

(1) 
flux 
n- 

= 1, 

The first variant of the variational principle 
formulated here for time interval dt in which 
the heat flux vector is used, and the second one 
for time interval (0, r) in which advantage is 
taken of the idea of Biot’s heat flow vector field 
[I]. From this formulation as the particular 
forms follow principles given in [l] and [3]. 

To complete the description of the pheno- 
menon, the balance equation for boundary 
conditions is introduced. The form used here for 
this equation enables us also to take into 
account the nonlinear boundary conditions. 

The use of both variants of variational 

Let the temperature 0 be considered as an 
increment of the temperature of the body over 
the absolute temperature T, which corresponds 
to an equilibrium state. At the beginning moment 
(t = 0) in the region A exists the prescribed 
temperature field 19,. 

3. VARIATIONAL PRINCIPLE FOR HEAT 
CONDUCTION 

The heat conduction phenomenon in the body 
A is described by: the law of conservation of 
energy, and Fourier’s law. The first one may be 
written: (a) for the time interval dt or (b) for 
the time interval (0, t). Then we obtain alterna- 
tively the following systems of equations describ- 
ing the phenomenon 

cd + Gi.i = w (2) 

/di+Gi=O (3) 
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for the case (a), and 

c0 + Hi,i = j w dt (4) 
0 

k$ + ki = 0 (5) 

for the case (b) where H denotes the heat flow 
vector field with components Hi (i = 1,2,3), 
introduced by Biot [l, 21. 

The foregoing two different systems of partial 
differential equations are distinguishable to 
show particular forms of variational principles 
which are used in the literature by various 
authors. 

The variational principle for the system (2) 
and (3) takes the form 

6t* + 6De = 1~68 dA - 1 Gin,68 dB (6) 
A B 

where the following variational invariants are 

De =; - ; GiGi - 2Gi0,i dA (7) 

A 

6V$ = 1 c&S dA. 
A 

On the other hand the variational 
for the system (4) and (5) has the form 

6V + 6D* = - j 06Hp, dB 
B 

where 

f 

(8) 

principle 

(9) 

V = - j [$@ i- o(Hi,i - s W dt)] dA (10) 
A 0 

6D* = $fi&H, dA. 
s 

(11) 
A 

The quantity V given by (10) may be considered 
as the canonical form of the thermal potential 
of the body A. The form 

V=+~ce2dA 
A 

(12) 

given by Biot [ 1,2] can be obtained if the energy 
balance equation will be treated as the constraint 
defining the relation between the temperature 

8 and the vector Hi. The variational principle 
(6) reduces itself then to the form given in [1,2] 
and is equivalent to Fourier’s law (5). 

By analogy, when we use the equation (3) 
as the constraint defining the relation between 
8 and G, then the invariant De is reduced to the 
form 

De =$~ktlilJidA 
A 

(13) 

and the variational principle (6) is in this case 
equivalent to the energy balance equation (2) 

I3 
The variational principle (6) is equivalent to 

the system of equations (2) and (3), and it will be 
equivalent to Fourier’s equation for heat con- 
duction if the potential of Gi is introduced [7] 

Gi = -kll/,i (14) 

with the boundary condition 

* = 0 on surface B. (15) 

For the variational principle (9) we introduce 
[l. 2.63 

H; = -k$,i (16) 

with boundary condition (15). 
It is interesting to notice that with the existence 

of two variants of the description of the heat 
conduction phenomenon, we obtain a series 
of consequences of which we can take advantage 
in practical calculations. Namely, using one 
of the reduced forms of the variational principle 
(6) or (9), we approximate either the energy 
conservation law or Fourier’s law of heat con- 
duction. Thus, we obtain results which approxi- 
mate, respectively better temperature field or 
heat flux field in the body considered. 

4. LAGRANGIAN FORMULATION 

Let the temperature 0 be described in terms 
of n independent parameters q, = q,(t), and 
G, (or Hi) in terms of m independent parameters 

P,, = p,(t) 

6(x, t) = 0(x, 4,, q2, . . . ,4,) (17) 
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Gi(x> ‘1 = Gi(X, ~1, ~1’. . -9 P,) 

H;fx, d = Hjk P, 3 P?, . . . P,). (18) 

The system of parameters (generalized co- 
ordinates [ 11) q, and p,(v = 1, 2, . , . , n; p = 1, 
2 9 *.., m) represents the departure from a certain 
reference state taken as an origin and for which 
q, and pP are equal to zero. 

Now, the variational invariants may be 
expressed as follows [ 1.3.73 

sv; = s cd+%&4 = $%v (19) 

A ’ 
Y 

where 

(20) 

where 

D =; 
s 

$fi,dA. 

A 

(22) 

Then, for n + m independent variations 6q, 
and bp,,, the variational principle (6) may be 
written in the following Lagrangian form 

p = 1,2,...,m (23) 

v = 1,2,...,n (24) 

where 

,.)=[w$dA-j(.,$dB (25) 

B 

and the variational principle (9) in the analogi- 
cal form 

av -= 
a% 0 ~=1,2 m > . . . . (26) 

!!+!D=Qv 

ap, aj, 

v = 1,2,...,n (27) 

where 

Q, = - 
s 

O$&dB. (28) 
R P 

The subsystems (23) and (26) are equivalent 
to the energy balance equation, and the sub- 
systems (24) and (27) to Fourier’s law. The 
subsystems (23) and (27) are composed of the 
first order ordinary differential equations, and 
subsystems (24) and (26) of the algebraic equa- 
tions. 

In the practical applications to describe the 
heat conduction phenomenon in the body, we 
can choose either equations (23) and (24) or 
equations (26) and (27). In both cases, it is 
possible to solve one equation, either (3) or (4), 
by the cvadrature in the first stage of the calcula- 
tions for an assumed trial temperature field 0, 
and next to use the reduced form of the 
variational principle (6) or (9) to obtain the 
solution of the problem. In such a procedure, 
the subsystems (24) or (26) are satisfied identi- 
cally, and we look for the time history of the 
generalized coordinates using Lagrangian-type 
equations (23) or (27). 

To use the full forms of the variational 
principle, we should also introduce trial func- 
tions for Gi or Hi and we should next solve 
simultaneously full system of equations (23) and 
(24) or (26) and (27). 

Choice of the particular form of the trial 
function for either 19, G, or Hi depends on the 
problem considered. Introducing the trial func- 
tions in the form of the complete set of the 
functions, we obtain as the result the exact 
solution of the problem, analogically as by a 
classical method [lo]. But, it is also convenient, 
being guided by the physical sense, to introduce 
simpler forms of the trial functions in the 
problem under consideration in which general- 
ized coordinates appear having some physical 
meaning and which can be directly calculated 
from the Lagrangian-type equation (23) or (27). 
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5. BOUNDARY CONDITIONS 

Let us approximate boundary conditions (1) 
by the use of the following equations [6,7] 

ir(x, 8, Gin, t)g,(x, t) dB = 0 cp = 1,2, . . . ,,f 

(29) 

where the surface B is divided into f regular 
subsurfaces B, and g, is a prescribed weighting 
function on each subsurface B,. For the varia- 
tional principle (9), we take into account in 
(29) the relation: Gi = fii. 

Let us introduce into the trial functions (17) 
and (18) an additional set of f generalized 
coordinates which will be determined by the use 
of (29). Now, the condition (29) takes the form 
of an additional system to (26) and (27) of the 
ordinary differential equations of the first order 
if the concept of the vector Hi is used, and it 
takes the form of an additional system to (23) 
and (24) of algebraic equations if the concept 
of vector Gi is used. 

The vector Gi or Hi can be eliminated from 
(29) using Fourier’s law and we obtain an 
additional system of algebraic equations in the 
form [6,7,9] 

Bi T(x, 8, t)g,(x, t) dB = 0 cp = 1,2, . . . ,f: (30) 

The physical meaning of the above-described 
procedure consists in adjusting the introduced 
trial function to satisfy the conditions on an 
average which are prevailing on the boundary 
of the body. In one-dimensional cases, the 
satisfaction is exact. 

6. APPLICATION TO THE PROBLEM OF THE 
HEATING OF A SLAB 

Let us consider a slab (0 < x < R) with 
constant parameters k and c, and initial tem- 
perature 0(x, 0) = To. .The surface x = 0 of the 
slab is heated by thermal radiation from a body 
the temperature of which is T, and by convection 
from the ambient, the temperature of which is 
T,, andthe surface x = R is cooled by convection 
to the ambient, the temperature of which is 
equal To. The boundary conditions can be 

expressed according to equation (1) in the 
following form 

ri(O, 0, Gin,) = [Gini - (c,P + E&J - E,,)] 

forx = 0 (31) 

T2(R, 0, Gin,) = [Gin, - (c,B - cd)] for x = R 

(32) 

where c,(r = 0, 1,. . . ,4), and are constants. 
We will distinguish two phases in the 

phenomenon. In the first one, the temperature 
has not yet begun to rise at the wall x = R, and 
the second one, when it begins to rise. 

Let us introduce for the first phase of the 
phenomenon the following trial function for the 
temperature distribution 

I o<q<q, 
UO ? ’ 40 ! 

where u = 8/T; u. = To/T, T > O--arbitrary 
reference temperature: q = x/R; ql,, qo- 
generalized coordinates: for the dimensionless 
temperature of the surface q = 0, and for the 
penetration depth, respectively. 

Applying formulae (13), (20), (25) and (33) 
for q = 1 (let qll = ql), we obtain the system of 
Lagrangian equations (23) (case (a)) in the form 

q,[3q,& + 4(q, - %&,I - WC?, - 4 = 0 
(34) 

3q,C2q,& + (41 - %&,I - 2o(q, - %I)= 0 
(35) 

and respectively, equations (27) (case (b)) in the 
form 

q,@q,,4, + 26(q, - ~,&,I 
- 147(q, - uo) = 0 (36) 
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5q”Pqo4l + WI, - ~OWOI 

- 84(q, - uJ = 0 (37) 

where 4 E aq/&; z s ( k/cR2)r-dimensionless 
time. 

The first system of the foregoing equations 
approximates the energy balance equations, and 
preserves Fourier’s law (3), and the second one 
preserves the law of the conservation of energy, 
and approximates Fourier’s law (5). 

To approximate the boundary condition (31) 
let us use balance equation (30) which takes the 
form(f= 1) 

2(q, - uJ + (Bi,q,” + Bi,q, - Bi,)q, = 0 

(38) 

where Bir = (ReJk)T”- (r = 1, 2)-modified 
Biot’s number (s = 1 for I = 1, and s = n for 
r = 2); Bi, = Bi2uBn + Bi,u,; ug = TJT; u, = 

X/IT: 
The chosen trial function in the form (33) 

includes for f = 1 two generalized coordinates. 
The time history of the coordinates should now 
be determined from a system of two equations. 
The system consists of the (38) and one optional 
equation from (34)-(37). The solution of the 
system can be presented as follows 

where 

aI, - !I2 = - or (39) 

I 
1 

= “ (x - u,)2(nBi2x”-’ + Bi,) dx 

s 
(Bi,x” + Bi,x - BQ3 

(40) 

“0 

41 

‘2 = s x - u. 
(B’ z2xn + Bi,x - B&J2 

dx. (41) 

a, /I, co--are coefficients depending on the 
system of equations chosen to determine the 
time history of the generalized coordinates (see 
Table 1). 

The solution of the integrals I, and I, for 
Bi, = 0, and natural n is given in [6]. For 
n = 4 and Bi, # 0 the fourth power poly- 

nomial in the denominator can be simply 
presented as a product of two quadratic forms, 
and the integrals I, and I, can be presented as 
a sum of elementary integrals [9]. 

The solution given in the form (39) is valid for 
the body 0 6 x < R up to the time r = rt 
when q. = 1. The temperature of the surface 
x = 0 at this time reaches the value q1 = q, 
which is an initial value for the second phase of 
the phenomenon. But we should notice that 
the formula (39) is also valid for times 0 G r 
< co for which it describes the time history 
of the surface temperature q1 for the semi- 
space x B 0. In this case, the asymptotic tem- 
perature q, no of the surface x = 0 can be found 
as a real positive root of the polynomial in the 
denominator of the integral (41) [9]. Thus 
time z = rr establishes the limit of the applic- 
ability of formula (39) only in the case of a 
finite body (0 < x < R ). 

Let us approximate the temperature distri- 
bution in the second phase of the slab, 0 <q < 1, 
by the following trial function 

U = q, + q2?f + q3q2 + . . . (42) 

Thus, we have three generalized coordinates 
the sum of which determines a temperature of 
the back side (x = R) of the body. To calculate 
the time history of ql, q2, q3, three equations 
are needed. 

By analogy to the first phase of the heating 
we obtain the Lagrangian-type equation in 
the form : 
for the case (a) 

124, + 15lj, + 204, - 4oq, = 0 (43) 

34, + 4cj2 + 64, - 12q, = 0 (44) 

24, + 34, + 64, - 12q, = 0 (45) 

and for the case (b) 

454, + 704, + 1264, - 126q, = 0 (46) 

5q3 + 84, + 154, - 3Oq, = 0 (47) 

34, + 54, + LO& - 20q3 = 0 (48) 
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Table 1. Coefjicients oftk equation (39) 41 
BiglX"- l +K + L 

No. System of equations chosen to Coefficients 
s B&x” + Kx - F 

dx = - or (51) 
determine generalized 4r 

coordinates a B 0 

1 (341, (38) 4 I 5 
where 

2 (35k (38) 1 3 513 

3 (36X (3gj 26 41 14714 Bi 
4 (37), (38) 3 5 21/5 K = Bi, + _--A.-. 

1 + Bi,’ 
F = Bi, + & (52) 

The balance equation (30) for boundary 
and for the case (a) 

conditions (31) and (32) takes the form (f= 2): 
L=3 

2 + Bij2 1 -t Bi 

q2 = Bi,q,” + Bi,q, - Bi, (49) 
(1 + B&)(4 + Bi,)’ w = 124 + Bi, 

2 (53) 

and for the case (b) 

-(2q, + q2) = Bi,(q, + q2 + qJ - Bi, (50) 

where Bi, = RE,/k; Bi, = Bip,. 
The time history of generalized coordinates 

can be determined by the system of equations 
(49) and (50), and one arbitrary equation from 
(43)-(45) and (46)-(48), alternatively. 

To compare the case (a) with (b), let us choose 
systems: (45), (49), (50) and (48), (49), (50). The 
solution for q1 can be presented in the form of 
an integral 

2 + Bi,2 

L = 5 (1 + B&)(7 + 2BiJ’ 
1 + Bi, 

w = 2o 7 + 5Bi, 

(54) 

A detailed discussion of the solutions of the 
integral (51) is given in [9]. 

Results of the numerical calculations for the 
slab are presented on the graphs tihich illustrate 
the influence of the dimensionless parameters 
Bii (i = 0, 1, 2, 3) and initial temperature U, on 

i,= vor, Bi, = Bi,=O~OOl 
IO 

7 2.5 Y 
.6 

5 

Y 4 0.5 

3 

FIG. 1. Transient temperature at the face of a semi-space subjected to radiant and convective 
heating for various values of the I?$, number. The initial temperature u0 = 0.1, and coeffkients 

a = 1, fl = 3,~ = 5/3. 
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the time history of the temperature qr. The 
influence of Bi, number which answers for 
temperatures of the heating medium is illus- 
trated on Fig. 1. Higher asymptotic temperatures 
qi, correspond to the higher Bi, numbers, i.e. 
higher temperatures ug and u, for the same 
Bi,, Bi, numbers. The influence of Bi, and Bi, 
which answer for convection and radiation, 
respectively is illustrated for a slab and for a 
semi-space on Fig. 2. The cross section of the 
temperature graphs for shorter times illustrates 
the fact that the role of radiation term increases 
with the increase of the temperature of the body. 

and u0 = 0 is illustrated on Fig. 4. One may 
observe the way in which generalized coordin- 
ates approach their asymptotic values. 

The values of penetration depth q,, > 1 
correspond to the temperature history in the 
semi-space x > 0. 

Division of the heating process on two phases 
causes a bending of graphs of temperatures in 
the vicinity of time t,. 

The results for the transient temperature 
distribution in a slab subjected to thermal 
radiation on one face, and insulated at the other 
one are compared on Fig. 5. with the results 

FIG. 2. Transient temperature u at the face of cslab and a semi-space subjected to radiant and 
convective heating. The back side of the slab is cooled convectively Bi, = 0002, Bi, = Bi, = 

0001, Bi, = var; G( = 1, fi = 3, w = $. 

Higher values of the Bi,, and Bi, numbers 
correspond to a better cooling ability, and then 
to smaller values of the asymptotic temperature 
in the body. The role of initial temperature u0 
is presented on Fig. 3. There is also a comparison 
of the influence of various sets of coefficients 
a, /LI, w on values of the temperature ql. 

The time history of all considered generalized 
coordinates for Bi, = Bi, = Bi, = 1, Bi, = 0.5 

obtained by means of a thermal-electrical 
analog computer [S], and it can be observed 
that there is a good consistence in the results. 
It can also be seen that for N > 20 the solution 
for the temperature field in the slab can be 
limited to the expression derived for the second 
phase only. (A similar fact can also be observed 
on Fig. 2.) 

For the case of convective heat transfer on 
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IO+ 
0 O-I O-2 03 0 4 0 5 0.6 07 0.9 09 

FIG. 3. Transient temperature at the face of a semi-space 
subjected to radiant and convective heating for various 
initial temperatures. Cases one to four correspond to the 
considered variants of formula (39). Bi, = 1, Bi, = 5, 

Bi, = 10. 

both sides of the slab, i.e. for c2 = 0 (Bi, = 0) 
the solution for the temperature distribution in 
the slab can be presented as follows : 

For the first phase of the heating (r < rt) 
2 

forO<~Gq, (55) 

0 for q. < r < 1 

where 

T, = 
u-u 
---A 

z - 41 - Uo, 

u, - uo u-24 a 0 

22 

q0 = Bi,(l - z)’ 

the equation 

(B - 4 ln 
2u - /? 

& + (28 - 31x)/2 + ~ 
1-r 

CL - 
2(1 - z)2 = - 

oBi12z. (56) 

The foregoing solution is valid up to time 
r = r, when q. = 1. This time we derive from 
the equation (56) putting in it z = z,. The tem- 
perature z, = (q, - uo)/(ua - uo) of the surface 
‘1 = 0 is found by the use of the formula 

z - Bil f 2 + Bi,’ 
(57) 

The dependence on time for the normalized The coefficients c(, fi, o in (56) are taken 
dimensionless temperature z is determined from from Table 1. 
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-Bi,--Bi,=Bi,= I, Bi,=O.5, u,=O 

Second phase of heating 

FIG. 4. Time history of generalized coordinates qi,(i = 0, 1, 2, 3) for a slab (0 < q i 1) and a semi-space 
(q 3 0) subjected to radiant heating and convectwe heating at the face. The slab is cooled convectively 

at the back side. Bi, = Bi, = Bi, = 1. Bi, = @5, I+, = 0. 

For the second phase of the heating (for 
z a Zt) 

U = z,(Bi, + Bi, + Bi,Bi,) (60) 

T, = z, + 

KC0 
01 =K+L (61) 

where 
(58) The difference between case (a) and (b) appears 

ino,. 

z0 = 
Bi,(l + Bi,) - U The exact solution for the convective heat 

Bi, + Bi,Bi,(l - q) - U transfer is [5] 

Bi, + Bi, + Bi,Bi, z 

2 + Bi, 
‘1 

> 

T= Bi, + Bi,Bi3(1 - q) 

Bi, + Bi, + Bi,Bi, 
(1 - Z) (62) 

x em”” (59) where 

cosb,(l - 41 + Bi, sinl&(l - v)]/P,, ,_,+ 
sin ,uL. cos P” + p” + Bi, sin ,u. 

2 sin p” &I 

(63) 
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I I/N =ofs,T;R/k x/L=0 

FIG. 5. Transient temperature at the insulated face of a slab subjected to radiant heating 
when flo/Tg = @5 (Ta = 0,). ___ Variational solution. ----- Solution obtained by 

means of a thermal-electric analog computer. 

pn are the roots of obtained by use of the formulae (55), (58) and 
(62) for the convective heat transfer are pre- 
sented on graphs (Figs. 69) for various Biot 
numbers. Bendings which may be seen on them 
for a certain instant of time are the consequence 
of the dividing of the phenomenon in two 
phases. We may also observe the average 
character of the approximate solutions. 

cot ~ = p2 - Bi,Bi 
,u(Bi, + Bi3> 

(64) 

The set of sinus and exponential functions 
(63) appearing in the exact solution (62) is 
approximated by one exponential function 
(59) in the approximate solution (58). Results 

I.0 I r] = 0, Bi,= 0 

FIG. 6. Temperature response at the front face of a slab suddenly exposed to a uniform 
temperature convective environment (E-exact solution; 1, 2, 3, &approximate solutions 

-numbers according to Table 1). 
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I.0 

0.9 

0.8 

O-7 

TO6 

05 

0.4 

o-3 

0.2 

O-I 

71=0.4, Bi 

3 =O 

T 

FIG. 7. Temperature response for q = 0.4 of the slab, 0 C q < 1, with insulated back face 
n = 1 sudden exposed to a uniform-temperature convective environment (E-exact solution: 

1,2,3, &approximate solutions-numbers according to Table 1). 

7. CONCLUSIONS 

It has been shown that two different ways of 
constructing the variational principle for heat 
conduction is possible. Thus, we obtain varia- 
tional principles (6) and (9) in which both tem- 
perature and heat flux vector (GJ or temperature 

FIG. 8. Temperature response of the back face q = 1 of the 
slab. 0 < n < 1, sudden exposed to a uniform-temperature 
convective environment (E--exact solution; 1, 2, 3, 4- 

approximate solutions-numbers according to Table 1). 

and heat flow vector (HJ appear. These principles 
may be considered as being in canonical form 
and can be reduced to the particular forms 

described in literature [l, 3] when assumptions 
are made between heat flux (or heat flow) 
vector and temperature. 

The variational principle completed by bal- 
ance equation (29) for boundary conditions 
permits us to solve heat conduction problems 
with nonlinear boundary conditions which were 
illustrated for the case of one-dimensional 
bodies. 

The obtained results indicate some available 
ways which may be chosen when the variational 
approach is preferable. The trial functions for 
temperature field and for the vector field Gi 
or Hi can be introduced in the considered body, 
and the full, canonical form of the variational 
principle can be used. However, it is convenient 
to employ one of two particular forms with 
suitable constraints. 

The results obtained by use of Biot’s method 
based on the heat flow vector field, and the 
results obtained by the method based on the 
variational principle for the law of energy 
conservation seem to be similar with acurate 
approximation of the problem considered. How- 
ever, the latter one has the advantage of sim- 
plicity because it does not need the introduction 
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FIG. 9. Temperature response of the front face 9 = 0 of the slab, 0 d 1 < 1, with con- 
vective heat transfer on both sides after step rise of the temperature of the front-face 
convective environment (E-exact solution; 1,2,3, &approximate solutions-numbers 

according to Table 1). 

of the additional potential field. Then in some 
cases it enables us to solve more complicated 
problems. Thus, the example of the heating of a 
slab by radiative and convective heat transfer 
on the surface could be reconsidered for the 
case of cylindrical and spherical geometry. 

Improving the accuracy of the approximate 
solutions is possible by a better adjustment of 
the trial function to the problem considered, 
e.g. increasing the number of the generalized 
coordinates. 

Variational principles discussed in this paper 
are based on Biot’s idea of quasi-variational 
principle [l, 21. This idea is connected with the 
proper choice of particular forms of dependence 
on generalized coordinates of the temperature 
field and heat flux field to satisfy the relations 
(19) or (21). 

It is also possible to have a different approach 
to the problem and to have the formulation of a 
convolution variational principle which does 
not need such assumptions [lo]. But the 
Lagrangian type equations considered in the 
present paper also follow from the convolution 
theory. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 
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APPENDIX A 

The solution for the phase (a) for a slab given by formula 

(39) can be simplitkd by application of y = x,/B where 

X1=X- a,, and B = Big? + Bi,x - Bi,. Then we obtain 

I = al, - B1* = -y:/2 + (a - /?)I, (A.1) 

wherey, = YI,=,,. 

APPENDIX B 

Integral I, can be presented for n = 4 by means of 

elementary integrals. namely we have 

I, = C,dx where Cn = 
s 

x - u0 

(Bi,x” + Bi,x - Bi,)’ 
(B.1) 

“0 

and for n = 4 we have 

C,= 2 
x - u0 

(B.2) 

where 

17 (x2 + six - bJ2Bii 
i= 1 

a, =y*=jl; az = --p; b, = (K - $)/2/~(; 

b, = -(K + $)/2/~. 

Expression (B.2) can be presented in the form of the 

following sum: 

c, 2 clx + c2 c3x + c4 

Bi: x2 + a,x + b, 
+ 

(x2 + a,x + b,)* 

+ 
c3x + C6 c,x + cg 

x2 + a,x + b, + (x2 + azx + b,)’ 1 
Coefficients cj can be calculated from the system 

{a,j) (cj} = (bi} i.j = 1.2 ,..., 8 

where 

{bi}= = {O.~.O,O,O,O.l, -u,}; 

ai,i = ai i+4 = lfori = 1,2,3,4; 

a 2.5 = a3.6 = -a2,i = -a3,2 = p; 

a 4,7 = a5.s = -a4.3 = -a5.4 - p. -2 

s1 = a5,2 = a5.6 = q5 = K: 

a5,3 = a6,4 = (K + 2p=)/pc; 

a3,1 = a4,2 = -b,: 

(B.3) 

(B.4) 

a 3,5 = a4,6 = - b,; 

a 5,1 = a6.* = -(F + 0); 

a 5,5 = a6,6 = -F + Kp; 

a 7.5 = as,6 = Fb,; 

a,., = a,,2 = Fb,: 

a 6.1 = a7.2 = (2Fp* + K2 + Kfi3)/2~; 

a 6,5 = a7,6 = -(2F$ + K2 - K$)/2p; 

a h.i = a7.J = -(K + p’); 

ah., = a7,R = -K + p’; 

2. 
% = a8,4 = b2, 

a7,7 = a8.8 = b;; 

and the other terms of the matrix {aij} vanish, and: 

K = Bi,/Bi, and F = Bi,/Bi,. 

Integral I, by use of expression (B.3) can be presented as 

follows 

1 
1, =s 

(2c, - c,a,)q, + cqal + 2c,b, 

2 -6,@ + a,q, - b,) 

(2c, - c3a,)u, + c4al + 2c,b, 

-6,(ui + aluO - b,) 

+ (25 - c,a,)q, + %a2 + 2c,b, 

-%(qf + a,q, - b,) 

(25 - c,a2)uo + c8a2 + 2c,b, 

-6,(u,?, + ape - b2) 

+ O.Sc In q: + a1q1 - bl 
I ui + a,uO - b, 

+ 0.5~~ In 
4: + a,q, - b, 

ui + a2u,, - b, 

+ 
6,(c,a, - 2cJ + 4c, - 2c,a, ln (2q, + a, - S?) 

- 26: I (2qr + a, + St) 

(2u, + a, + at) _ b,(2c, - c5a2) - 25 + +a2 

(2u, + a, - 6:) (-6,Y 

( 

2q, + a, 2u +a 
x arctan ____ - arctan 0 

(-6,)* (-a,)* 11 

where 

6, = at + 4b,: 6, = ai + 4b, 
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DISTRIBUTION DE TEMPERATURE TRANSITOIRE CALCULEE PAR UNE METHODE 
VARIATIONNELLE DANS UNE PLAQUE SOUMISE A UN CHAUFFAGE PAR RAYONNE- 

MENT ET CONVECTION 

Rbumk-On considere la description variationelle du phenomene de conduction de chaleur. On examine 
une application du principle variationel pour un systeme des equations decrivant le phtnomene, c’est a dire 
la loi de Fourier et las loi de conservation d’energie. 

La description du phenombne est complet&e par la condition dtquilibre consider&e dans une forme 
g&&ale. I1 est einsi possible de considtrer les conditions aux limites nonlineaires. 

On a determine la distribution de temperature dans le cas de conduction de chaleur unidimensionelle en 
regime transitoire dans des parois planes chauffes par convection et rayonnement de la chaleur. 

On a determine la distribution de temperature dans le cas de conduction de chaleur unidimensionelle en 
regime transitoire dans des parois planes chauffes par convection et rayonnement de la chaleur. 

DIE IN STATIONARE TEMPERATURVERTEILUNG IN EINER BESTRAHLTEN UND 
KONVEKTIV BEHEIZTEN PLATTE, BERECHNET NACH EINER VARIATIONSMETHODE 

Znaammenfassnng-Es wird die Anwendung des Variationsprinzips auf Probleme der Warmeleitung 
betrachtet. Hierbei wird das Variationsprinzip ftir die das System beschreibenden Gleichungen formuliert, 
nlmlich das Gesetz von Fourier und der Erhaltungssatz der Energie. 

Zusatzlich wird eine Bilanzgleichung fur die Randbedingungen in allgemeiner Form aufgestellt. mit 
deren Hilfe man such nichtlineare Randebedingungen behandeln kann. 

Die nichrtationsre. eindimension:llc Temperaturverteilung in einer Platte wird berechnet mit Wirme& 
betragung durch Strahlung und Konvektion an ihren RLndern. 

B_4PIIAHIIOHHbIH METOJI, PACYETA HECTALHIOHAPHOPO PACIIPEJ&JIEHMH 
TEMIIEPATYP B IIJIMTE IIOABEPI’AEMOH JIY=IHCTOMY II 

KOHBEKTBBHOMY HAPPEBY 

AaHoTaqsiJI-B pa6OTe IIPIIHHT BapPiaqHOHHbIfi no~~xo~ K OnI4CaHm rrpoqecca Temo- 

npOBOAHOCTA.PaCCMaTpIlBaeTCRnpllMeHeHIleBapsaqr~OHHofO npHH~ElnaC~OpMyJIllpOBaHHOr0 

RJI2-I CHCTeMbI ypaBHeHd OnMCbIBaIO~eli npOlJeCC TeIIJIOnpOBO~HOCTcl, TO eCTb AJIH 3aKOHa 

@ypbe II 6ajraHca 3Heprm. 

OIIIlCaHMe IIpOL\eCCa ROnOJIHeHO ypaBHeHIleM 6anaHca JUIa rpaHHYHbIX yCJIOB"ti npeJ(- 

CT~B~eHHbIXBo6~eli~OpMe.~OpMa3Ta~aeTTOHteB03MO~HOCTbpaCCMaTpIIBaTbHe~~~He~HbIe 

rpaamable ymo~m. 

OnpeneJreHo 0flHoKoopgmaTHoe pacnpenenewle TemepaTypbr ~nrl KecTaqkIoHapHoro 

pewma B rumTax, c yseToM pa~iia~sroHKor0 II KOHBeKI\lIOHHOrO TenJIOO6MeHOB Ha 

nOBepXHOCTI1. 


