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Abstract. —The variational approach to the heat conduction phenomenon is considered. The use of the
variational principle formulated for the system of equations describing the phenomenon, i.e. for Fourier’s
law and the law of energy conservation is discussed.

The description of the phenomenon is completeted by a balance equation for boundary conditions
discussed in the generalized form. This form also makes possible the consideration of nonlinear boundary

conditions.

The transient, one-dimensional temperature distribution is determined for plates with radiative and

convective heat transfer on the boundary.

NOMENCLATURE

region of the body considered:
boundary (surface) of the body
A;

generalized Biot numbers de-
fined by equation (38);
subsurface of the boundary
B;

capacity per unit volume of
the body A4;

dissipation functions defined
by equations (13) and (22),
respectively;

dimensionless number de-
fined by equation (52);
weighting function in balance
boundary condition (29);
heat flux vector with com-
ponents G.(i = 1,2,3);
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heat flow vector with com-
ponents H (i = 1,2,3);
integrals defined by equations
(40) and (41), respectively;
conductivity of the body A4;
dimensionless number de-
fined by equation (52);
dimensionless number de-
fined by equations (53) and
(54);

normal unit vector with com-
ponents n,(i = 1,2,3) of sur-
face B taken as positive out-
wardly;

generalized coordinates de-
fined in equations (17) and
(18), respectively;

generalized coordinates de-
fined in equation (33);
generalized coordinates de-
fined in equation (38);
generalized coordinate equal
to the temperature of the face
of the slab when g, = 1;
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generalized forces defined by
equations (25) and (28), re-
spectively;

constants defined inequations
(31) and (32);

x/R, dimensionless coordi-
nate;

temperature considered as an
increment of the temperature
of the body over the absolute
temperature T, which cor-
responds to an equilibrium
state;

root of the -characteristic
equation (64);

kt/cR?, dimensionless time;
instant of time when g, = 1;
potential of the heat flux field
defined by equation (14) or
equation (16);

constant in equation (39);
dimensionless constant de-
fined by equation (61).

number of subsurfaces B, of
the boundary B;

describes the direction of the
vector coordinate in a rec-
tangular cartesian coordinaté
system, and has the range of
the integers 1,2, 3;

number of the generalized
coordinates p,:

number of the generalized
coordinates g, and also index
of the power in equation (38);
are used to distinguish the
generalized coordinates p and
g, respectively;

subscript of the subsurface B.

For subscripts the summation convention will

be used.

R,
t.

semi-thickness of the slab;
time:

N

P!

>

g’

w = w(x,t),

X,

a, B,

r=r®,Gn

r,.r,

8D*,5V*,

arbitrary reference tem-
perature;

initial temperature of the slab;
temperature of the ambient
at the face of the slab;
temperature of the body to
which thermal radiation is
exposed the face of the con-
sidered slab;

(u — uy)/(u, — u,), dimension-
less initial temperature in
equation (55);

(6/T), dimensionless temper-
ature;

dimensionless quantity de-
fined by equation (60);

T,/T, dimensionless initial
temperature;

T,/T, T/T, dimensionless tem-
peratures of the environment;;
thermal potential functions
defined by equations (10) and
(20), respectively;

prescribed heat source in the
body 4;

coordinate vector with com-
ponents x(i = 1,2.3):

(q, — uy)/w, — u,), dimen-
sionless temperature in equa-
tion (55):

(4, — Ve, — ug):
quantities defined by equa-
tions (63) and (59), respect-
ively;

constants in equation (39);

»1), function prescribed on the

boundary B:

functions given by equations
(31) and (32), respectively;
variational invariants defined
by equations (11) and (8),
respectively.

1. INTRODUCTION

THE ATTENTION of several investigators has been
focused on the variational approach to the heat
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conduction problem, [14, 6 and others]. The
calculational methods based on this approach
are promising and permit us to obtain approxi-
mate solutions of the problems which have not
yet been solved. These methods permit us, at
the same time, to simplify the numerical calcu-
lations and allow us to save time when they are
adapted to the construction of the numerical
calculations on the computer. But, on the other
hand, the foundations of the variational prin-
ciples for heat conduction are not yet clear [4].
Thus appeared in the literature the “restricted-"
or “quasi-” variational principles for Fourier’s
law or for the law of energy conservation,
alternatively. Then the heat conduction pheno-
menon was described by a variational principle
and a differential equation considered as a
constraint.

In this paper is presented the variational
description of the heat conduction problem
based on an idea of a system of restricted varia-
tional principles [7] formulated for the system
of differential equations describing the pheno-
menon (governing equations), i.e. for Fourier’s
law and the energy conservation law. Such an
approach conducted here for two possible
variants of the systems of governing equations
gives a basis for putting in order some of the
particular forms of the variational principle
for the heat conduction problem. There is also
shown here how systems of variational principles
can be reduced to the forms described in the
literature.

The first variant of the variational principle
formulated here for time interval dr in which
the heat flux vector is used, and the second one
for time interval (0,1) in which advantage is
taken of the idea of Biot’s heat flow vector field
[1]. From this formulation as the particular
forms follow principles given in [1] and [3].

To complete the description of the pheno-
menon, the balance equation for boundary
conditions is introduced. The form used here for
this equation enables us also to take into
account the nonlinear boundary conditions.

The use of both variants of variational
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principles is illustrated by an example of the
heating of a slab with radiative and convective
heat transfer on the boundary. The results
obtained in the form of formulae and graphs are
an approximate solution of the problem con-
sidered. The accurateness of the method is veri-
fied for the particular limiting cases and is
compared with others which exist in the litera-
ture, with approximate results.

2. PROBLEM FORMULATION

Let us consider the problem of transient heat
conduction in an isotropic body A with thermal
parameters: k(x}—conductivity, and ¢(x)—capa-
city per unit volume. In the body A is prescribed
heat source w = w(x,t) where x denotes co-
ordinate vector with components x, (i = 1,2, 3),
and t—time. On the boundary B of the body A is
prescribed the function

I'0,Gn,t) = 0 on surface B (1)

where 6 denotes temperature, G—heat flux
vector with components G,(i=1,2,3), n—
normal unit vector with components n, (i = 1,
2, 3) of surface B taken as positive outwardly.

Let the temperature & be considered as an
increment of the temperature of the body over
the absolute temperature T, which corresponds
to an equilibrium state, At the beginning moment
(t = 0) in the region A exists the prescribed
temperature field 4,

3. VARIATIONAL PRINCIPLE FOR HEAT
CONDUCTION

The heat conduction phenomenon in the body
A is described by: the law of conservation of
energy, and Fourier’s law. The first one may be
written: (a) for the time interval di¢ or (b) for
the time interval (0, f). Then we obtain alterna-
tively the following systems of equations describ-
ing the phenomenon

b+G,,=w )

k6, + G, =0 3)
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for the case (a), and
t
0+ H  =[wdt 4
0

k0, + H,=0 5)

for the case (b) where H denotes the heat flow
vector field with components H (i = 1,2,3),
introduced by Biot [1, 2].

The foregoing two different systems of partial
differential equations are distinguishable to
show particular forms of variational principles
which are used in the literature by various
authors.

The variational principle for the system (2)
and (3) takes the form

8V* + 6D, = [wd0dA ~ [ Gns0dB (6)
A B

where the following variational invariants are

1 1
D, = EK_ GG~ 2Gi9’i) d4  (7)
A4
5V* = [ c060 dA. (8)
A

On the other hand, the variational principle
for the system (4) and (5) has the form

oV + 6D* = — j'(?éHini dB 9)
B
where

V= — [[4c6> + O(H,, — [ wdn] dd (10)
A 0

SD* = J Yy sh da (1)

k
A
The quantity V given by (10) may be considered
as the canonical form of the thermal potential
of the body A. The form

=1fch%da (12)
A

given by Biot [ 1, 2] can be obtained if the energy
balance equation will be treated as the constraint
defining the relation between the temperature

0 and the vector H,. The variational principle
(6) reduces itself then to the form given in [1, 2]
and is equivalent to Fourier’s law (5).

By analogy, when we use the equation (3)
as the constraint defining the relation between
8 and G, then the invariant D, is reduced to the
form

(13)

e 2

D,=1{ko,0, d4
A

and the variational principle (6) is in this case
equivalent to the energy balance equation (2)
(3]

The variational principle (6) is equivalent to
the system of equations (2) and (3), and it will be
equivalent to Fourier’s equation for heat con-
duction if the potential of G, is introduced [7]

G, = ~ky (14)
with the boundary condition
¥ = 0 on surface B. (15)

For the variational principle (9), we introduce
[1.2.6]

H, = _kl//,i (16)

with boundary condition (15).

It is interesting to notice that with the existence
of two variants of the description of the heat
conduction phenomenon, we obtain a series
of consequences of which we can take advantage
in practical calculations. Namely, using one
of the reduced forms of the variational principle
(6) or (9), we approximate either the energy
conservation law or Fourier’s law of heat con-
duction. Thus, we obtain results which approxi-
mate, respectively better temperature field or
heat flux field in the body considered.

4. LAGRANGIAN FORMULATION

Let the temperature § be described in terms
of n independent parameters q, = g (t), and
G, (or H) in terms of m independent parameters
p,=pl0

G(x, 1) = e(xvqp qz,---sqn) amn
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Gi(x,t) = G{X, P}, D+ Pp) }
H{x.t) = H(x,p,Pss-... P, (18)

The system of parameters (generalized co-
ordinates [1]) g, and p,(v =1, 2,...,n; u =1,
2, ..., m) represents the departure from a certain
reference state taken as an origin and for which
g, and p, are equal to zero.

Now, the variational invariants may be
expressed as follows [1. 3, 7]

SV* = JcéﬁaquA = ‘We (19)
aq, oq,
A
where
V, =1{c6%dA (20)
A
SD*= 1 aHla ,d4 —a—Dép (21)
k 'a
A
where
D= ! 1HH d4 (22)
T2 ) kT
A

Then, for n + m independent variations dq,

and op,, the variational principle (6) may be
written in the following Lagrangian form
v, b
e 4 &= Q@ =12,..., 23
a9, * aq, O # " *)
6De=0 v=12...,n (24)
op,
where
o0
0© = Jwgev j Gn,— a, dB (25)
A B

and the variational principle (9) in the analogi-
cal form

v _ u=12...,m (26)
041v
QK ob =Q, v=12,...,n 27

op, ' b,

where

(28)

The subsystems (23) and (26) are equivalent
to the energy balance equation, and the sub-
systems (24) and (27) to Fourier’s law. The
subsystems (23) and (27) are composed of the
first order ordinary differential equations, and
subsystems (24) and (26) of the algebraic equa-
tions.

In the practical applications to describe the
heat conduction phenomenon in the body, we
can choose either equations (23) and (24) or
equations (26) and (27). In both cases, it is
possible to solve one equation, either (3) or (4),
by the cvadrature in the first stage of the calcula-
tions for an assumed trial temperature field 6,
and next to use the reduced form of the
variational principle (6) or (9) to obtain the
solution of the problem. In such a procedure,
the subsystems (24) or (26) are satisfied identi-
cally, and we look for the time history of the
generalized coordinates using Lagrangian-type
equations (23) or (27).

To use the full forms of the variational
principle, we should also introduce trial func-
tions for G, or H, and we should next solve
simultaneously full system of equations (23) and
(24) or (26) and (27).

Choice of the particular form of the trial
function for either 8, G, or H,; depends on the
problem considered. Introducing the trial func-
tions in the form of the complete set of the
functions, we obtain as the result the exact
solution of the problem, analogically as by a
classical method [10]. But, it is also convenient,
being guided by the physical sense, to introduce
simpler forms of the trial functions in the
problem under consideration in which general-
ized coordinates appear having some physical
meaning and which can be directly calculated
from the Lagrangian-type equation (23) or (27).



5. BOUNDARY CONDITIONS

Let us approximate boundary conditions (1)
by the use of the following equations [6, 7]

LF(x, 0,Gn,t)g (x.)dB=0 ¢ =12,....f
(29)

where the surface B is divided into f regular
subsurfaces B, and g, is a prescribed weighting
function on each subsurface B . For the varia-
tional principle (9), we take into account in
(29) the relation: G, = H,.

Let us introduce into the trial functions (17)
and (18) an additional set of f generalized
coordinates which will be determined by the use
of (29). Now, the condition (29) takes the form
of an additional system to (26) and (27) of the
ordinary differential equations of the first order
if the concept of the vector H, is used, and it
takes the form of an additional system to (23)
and (24) of algebraic equations if the concept
of vector G, is used.

The vector G, or H; can be eliminated from
(29) using Fourier's law and we obtain an
additional system of algebraic equations in the
form [6,7,9]

§ M(x,0,09,(,)dB =0 ¢ =1,2,....f (30)
B(D

The physical meaning of the above-described
procedure consists in adjusting the introduced
trial function to satisfy the conditions on an
average which are prevailing on the boundary
of the body. In one-dimensional cases, the
satisfaction is exact.

6. APPLICATION TO THE PROBLEM OF THE
HEATING OF A SLAB

Let us consider a slab (0 < x < R) with
constant parameters k and ¢, and initial tem-
perature 0(x, 0) = T,,. The surface x = 0 of the
slab is heated by thermal radiation from a body
the temperature of which is T and by convection
from the ambient, the temperature of which is
T,, and the surface x = R is cooled by convection
to the ambient, the temperature of which is
equal T,. The boundary conditions can be
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expressed according to equation (1) in the
following form

r0,0,Gn)=1[Gn, — (,0" + ¢,0 — ¢,)]

forx =0 (31

I'yR,0,Gn)=[Gn, — (c,0 — ¢,)]forx = R
(32)

where ¢ (r = 0,1,...,4), and are constants.

We will distinguish two phases in the
phenomenon. In the first one, the temperature
has not yet begun to rise at the wall x = R, and
the second one, when it begins to rise.

Let us introduce for the first phase of the
phenomenon the following trial function for the
temperature distribution

2wl ]

u=<v=t (33)
0<n<gq,

Uy m =>4

where u = 0/T, u, = T,/T, T > O—arbitrary
reference temperature; n = x/R; 4q,, q,—
generalized coordinates: for the dimensionless
temperature of the surface n = 0, and for the
penetration depth, respectively.

Applying formulae (13), (20), (25) and (33)
for n =1 (let q,, = q,), we obtain the system of
Lagrangian equations (23) (case (a)) in the form

q0[3qoql + 4(q1 - uo)éo] - 2(qu - uo) =0
(34)

3‘10[240‘11 + (q1 - uo)éo] - 20(‘11 - uo)= 0
(3%)

and respectively, equations (27) (case (b)) in the
form

q0[15q0‘11 + 26((11 - uo)éo]

—147(q, —u) =0  (36)
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Sqn[2qoq1 + 3(611 - uo)qo]
—84q, —uy)) =0 37)

where ¢ ==0dq/0t; 1==(k/cR*)t—dimensionless
time.

The first system of the foregoing equations
approximates the energy balance equations, and
preserves Fourier’s law (3), and the second one
preserves the law of the conservation of energy,
and approximates Fourier’s law (5).

To approximate the boundary condition (31)
let us use balance equation (30) which takes the
form(f=1)

20q, — u,) + (Bi,q," + Bi,q, — Bi,)g, = 0
(38)

where Bi = (Re/k)T*"' (r = 1, 2)—modified
Biot’s number (s =1 for r = 1, and s = n for
r=2); Bi, = Bizug" + Bi u,; u, = Ty/T; u, =
T)T

The chosen trial function in the form (33)
includes for f = 1 two generalized coordinates.
The time history of the coordinates should now
be determined from a system of two equations.
The system consists of the (38) and one optional
equation from (34)—(37). The solution of the
system can be presented as follows

al, — Bl, = — wr (39)

where
q1
(x — u,)*(nBi,x"~! + Bi,)
1. = 0 2 12d 4

t Bix + Bix—Biyp o @0
q1

I X — % dx. 41

2 ] (Bi,x" + Bi,x — Biy)?
uo

o, B, w—are coefficients depending on the
system of equations chosen to determine the
time history of the generalized coordinates (see
Table 1).

The solution of the integrals I, and I, for
Bi, =0, and natural n is given in [6]. For
n=4 and Bi, #0 the fourth power poly-

nomial in the denominator can be simply
presented as a product of two quadratic forms,
and the integrals I, and I, can be presented as
a sum of elementary integrals [9].

The solution given in the form (39) is valid for
the body 0 < x < R up to the time 7 =7,
when g, = 1. The temperature of the surface
x =0 at this time reaches the value q, = g,
which is an initial value for the second phase of
the phenomenon. But we should notice that
the formula (39) is also valid for times 0 < 7
< oo for which it describes the time history
of the surface temperature g, for the semi-
space x = 0. In this case, the asymptotic tem-
perature g, of the surface x = 0 can be found
as a real positive root of the polynomial in the
denominator of the integral (41) [9]. Thus
time 7 = t, establishes the limit of the applic-
ability of formula (39) only in the case of a
finite body (0 < x < R).

Let us approximate the temperature distri-
bution in the second phase of the slab, 0<n <1,
by the following trial function

u=q, +q,0+qn°* + ... (42)

Thus, we have three generalized coordinates
the sum of which determines a temperature of
the back side (x = R) of the body. To calculate
the time history of q,, q,, q,, three equations
are needed.

By analogy to the first phase of the heating
we obtain the Lagrangian-type equation in
the form:

for the case (a)

124, + 154, + 204, — 40q, = 0 (43)
3g, + 44, + 64, — 129, =0 (44)
24, + 34,+ 64, —12q, =0 (45)

and for the case (b)
454, + 709, + 1264, — 126g, = 0 (46)
54, + 84, + 154, — 30gq, =0 (47)
3¢ + 54, + 104, — 20g, =0 (48)
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Table 1. Coefficients of the equation(39)

No. System of equations chosen to Coefficients
determine generalized
coordinates o B w
1 (34),(38) 4 7 5
2 (35),(38) 1 3 5/3
3 (36),(38) 26 41 147/4
4 (37),(38) 3 5 21/5

The balance equation (30) for boundary
conditions (31) and (32) takes the form (/= 2):

q, = Biyq," + Bi,q, — Bi, (49)

—(2q3 + qz) = Blg(ql + q, + q3) - Bl4 (50)

where Bi, = Re,/k; Bi, = Biju,.

The time history of generalized coordinates
can be determined by the system of equations
(49) and (50), and one arbitrary equation from
(43){45) and (46)(48), alternatively.

To compare the case (a) with (b), let us choose
systems: (45), (49), (50) and (48), (49), (50). The
solution for g, can be presented in the form of
an integral

Bigy=var, Bi = 8i,=0-00}
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41

Bi,nx""' +K + L
dx = —
J Bi,v + Kx — F x wt (51)
qe
where
Bi Bi
K = Bi 3. F=Bi =
SRy TS Wiy, %2
and for the case (a)
2 + Bi,? 1 + Bi
L=3 . ;D w=12 2 (53
TTBya+8y ““%vm >
and for the case (b)
2+ Bi?2 1+ Bi
L= P =202
(I + Bij)(7 + 2B "7+ SBi,
(54)

A detailed discussion of the solutions of the
integral (51) is given in [9].

Results of the numerical calculations for the
slab are presented on the graphs which illustrate
the influence of the dimensionless parameters
Bi, (i = 0, 1, 2, 3) and initial temperature u, on

e

9

Bi, 10

,,
T
(o]

3]
T

o0l —
m | lllll\LL

0! 10° 10!

102 10° 104

FiG. 1. Transient temperature at the face of a semi-space subjected to radiant and convective
heating for various values of the Bi, number. The initial temperature u, = 0-1, and coefficients
a=18=30=5/3
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the time history of the temperature g,. The
influence of Bi, number which answers for
temperatures of the heating medium is illus-
trated on Fig. 1. Higher asymptotic temperatures
4 correspond to the higher Bi, numbers, i..
higher temperatures u, and u, for the same
Bi,, Bi, numbers. The influence of Bi, and Bi,
which answer for convection and radiation,
respectively is illustrated for a slab and for a
semi-space on Fig. 2. The cross section of the
temperature graphs for shorter times illustrates
the fact that the role of radiation term increases
with the increase of the temperature of the body.

5 =
14—

13—

925

and u, = 0 is illustrated on Fig. 4. One may
observe the way in which generalized coordin-
ates approach their asymptotic values.

The values of penetration depth ¢, > 1
correspond to the temperature history in the
semi-space x = 0.

Division of the heating process on two phases
causes a bending of graphs of temperatures in
the vicinity of time t,.

The results for the transient temperature
distribution in a slab subjected to thermal
radiation on one face, and insulated at the other
one are compared on Fig. 5. with the results

10—
09— Blb = 0002

. os| &, =000
o7l B =var
8/, = 000!
0-6f—
a=1, B=3,w=5/3
05~ Slab, Og <l Semi - space,
0.4 O<sm<m
03
o2
v, ol cnd vl e
10" 102 103 104 10° 108

-

F1G. 2. Transient temperature u at the face of a slab and a semi-space subjected to radiant and

convective heating. The back side of the slab is cooled convectively Bi, = 0:002, Bi, = Bi, =
0001, Bi, = var;a = 1, =3, 0 = 3.

Higher values of the Bi,, and Bi, numbers
correspond to a better cooling ability, and then
to smaller values of the asymptotic temperature
in the body. The role of initial temperature u,
is presented on Fig. 3. There is also a comparison
of the influence of various sets of coefficients
a, B, w on values of the temperature g, .

The time history of all considered generalized
coordinates for Bi, = Bi, = Bi, =1, Bi, =05

obtained by means of a thermal-electrical
analog computer [8], and it can be observed
that there is a good consistence in the results.
It can also be seen that for N > 20 the solution
for the temperature field in the slab can be
limited to the expression derived for the second
phase only. (A similar fact can also be observed
on Fig. 2))

For the case of convective heat transfer on
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10 —
~ Biy=|, 855,810
| [Case
T
10°| 2
= |3
= L4
6’

T T IIlllll

0-009850

— ug 0004925

Uy

— 4,=0014770

|| |

o 0l

02 03 04 05 06 07 08 09 10
q.

FiG. 3. Transient temperature at the face of a semi-space

subjected to radiant and convective heating for various

initial temperatures. Cases one to four correspond to the

considered variants of formula (39). Bi, =1, Bi, = 5,
Bi, = 10.

both sides of the slab, i.e. for ¢, = 0 (Bi, = 0)
the solution for the temperature distribution in
the slab can be presented as follows:

For the first phase of the heating (t < 1)

2
T = {z(l - l) for0<n<g, (55
P qO
0 forg, <n <1
where
=tttk
u, — U, u, — u,
_ 2z

©=ga-2

The dependence on time for the normalized
dimensionless temperature z is determined from

the equation

(B—a)lnli_,+(2ﬂ—3a)/2+2]a___ﬂ

o

R 9

= — wBi .

The foregoing solution is valid up to time

7 = 1, when g, = 1. This time we derive from

the equation (56) putting in it z = z,. The tem-

perature z, = (q, — u,)/(u, — u,) of the surface
1 = 0 is found by the use of the formula

Bi,

=_—1_ 57

“ T2 Bi (57

The coefficients «, B, @ in (56) are taken

from Table 1.
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o'
"
o " 8i,=Bij=Bi,=, 8i;=0'5, u,s0 . _
= q+q,*q,, ietransient temperature
? o of the back side of the slab
~ 107 = g, for a semi-space (p=1)
- LPenefraﬁon depth,q, |
| g for a slab
-q,
L |
| q-
107! @ { i
First phase of heating | Second phase of heating
— a=4,B=T,w=5 |
3x1072 I I | I | I | | | | L1
107 10? 10" 10° 10
T
F1G. 4. Time history of generalized coordinates g, (i = 0, 1, 2, 3) for a slab (0 < # < 1) and a semi-space
(n = 0) subjected to radiant heating and convective heating at the face. The slab is cooled convectively
at the back side. Bi, = Bi, = Bi, = 1,Bi; = 0:5,u, = 0.
For the second phase of the heating (for U = z(Bi, + Bi, + Bi Bi,) (60)
T>=1,)
. R Ko
Bi, + Bi Bi,(1 —n) - U =
T =z +—1- Biyll — ) 1-2z) A 1)
4 Bi, + Bi, + Bi Bi,
where (58) ' The difference between case (a) and (b) appears
inw,.
7 - Bi,(1 + Biy) - U The exact solution for the convective heat
“ " Bi, +BiBil—n)—U transfer is [ 5]
Bi Bi Bi Bi i i Bi.(1 —
x<1+Bi1n— 1 + Biy + Bi Biy 2) po Bt BB -
2 + Bi, Bi, + Bi, + Bi,Bi,
xe " (59)  where
S cosfp (1 — + Bi,sin[p (1 —
Z = Z [ll’n( r’)] 3 [#n( r’)]/ﬂ" e—u,z‘r (63)
n=1

(1 N El_3> sin p, cos p, + N Bi, sinp,_

Bi, 2sin p, M,
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F1G. 5. Transient temperature at the insulated face of a slab subjected to radiant heating

when 00/7; =05 (T, = 6,).

Variational solution.

Solution obtained by

means of a thermal-electric analog computer.

i, are the roots of

u* — Bi,Bi,

u(Bi, + Bi,)
The set of sinus and exponential functions

(63) appearing in the exact solution (62) is

approximated by one exponential function
{59) in the approximate solution (58). Results

cotu = (64)

n=0,8i=0

obtained by use of the formulae (55), (58) and
(62) for the convective heat transfer are pre-
sented on graphs (Figs. 6-9) for various Biot
numbers. Bendings which may be seen on them
for a certain instant of time are the consequence
of the dividing of the phenomenon in two
phases. We may also observe the average
character of the approximate solutions.

“E,,2,34

T

Lol o

10° 10! 10?2

F1G. 6. Temperature response at the front face of a slab suddenly exposed to a uniform
temperature convective environment (E—exact solution; 1, 2, 3, 4—approximate solutions
—numbers according to Table 1).
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FiG. 7. Temperature response for 7 = 0-4 of the slab, 0 < 5 < 1, with insulated back face
n = 1 sudden exposed to a uniform-temperature convective environment (E— exact solution;
1,2, 3, 4—approximate solutions—numbers according to Table 1).

7. CONCLUSIONS
It has been shown that two different ways of
constructing the variational principle for heat
conduction is possible. Thus, we obtain varia-
tional principles (6) and (9) in which both tem-
perature and heat flux vector (G,) or temperature

'O g, 8400 s
o9f-
o8-
o7 8i,=10
f 2

06]-

04

o

EL234

ol vl il
107 107 10° 10' 102
T
Fic. 8. Temperature response of the back face n = 1 of the
slab. 0 € n < 1, sudden exposed to a uniform-temperature
convective environment (E—exact solution; 1, 2, 3, 4—
approximate solutions—numbers according to Table 1).

and heat flow vector (H) appear. These principles
may be considered as being in canonical form
and can be reduced to the particular forms

described in literature [1, 3] when assumptions
are made between heat flux (or heat flow)
vector and temperature.

The variational principle completed by bal-
ance equation (29) for boundary conditions
permits us to soive heat conduction problems
with nonlinear boundary conditions which were
illustrated for the case of one-dimensional
bodies.

The obtained results indicate some available
ways which may be chosen when the variational
approach is preferable. The trial functions for
temperature field and for the vector field G,
or H, can be introduced in the considered body,
and the full, canonical form of the variational
principle can be used. However, it is convenient
to employ one of two particular forms with
suitable constraints.

The results obtained by use of Biot’s method
based on the heat flow vector field, and the
results obtained by the method based on the
variational principle for the law of energy
conservation seem to be similar with acurate
approximation of the problem considered. How-
ever, the latter one has the advantage of sim-
plicity because it does not need the introduction
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Fi1G. 9. Temperature response of the front face n = 0 of the slab, 0 < 5 < 1, with con-

vective heat transfer on both sides after step rise of the temperature of the front-face

convective environment (E—exact solution; 1, 2, 3, 4—approximate solutions—numbers
according to Table 1).

of the additional potential field. Then in some
cases it enables us to solve more complicated
problems. Thus, the example of the heating of a
slab by radiative and convective heat transfer
on the surface could be reconsidered for the
case of cylindrical and spherical geometry.

Improving the accuracy of the approximate
solutions is possible by a better adjustment of
the trial function to the problem considered,
e.g. increasing the number of the generalized
coordinates.

Variational principles discussed in this paper
are based on Biot’s idea of quasi-variational
principle [1, 2]. This idea is connected with the
proper choice of particular forms of dependence
on generalized coordinates of the temperature
field and heat flux field to satisfy the relations
(19 or (21).

It is also possible to have a different approach
to the problem and to have the formulation of a
convolution variational principle which does
not need such assumptions [10]. But the
Lagrangian type equations considered in the
present paper also follow from the convolution
theory.

10.
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APPENDIX A
The solution for the phase (a) for a slab given by formula
(39) can be simplified by application of y = x,/B where
Xy =X —u, and B = Bi,x" + Bi x — Bi,. Then we obtain

I=af ~Bl, = —y}2 + (@« — P, (A.I)

wherey, = y|

x=gqy’

APPENDIX B

Integral I, can be presented for n = 4 by means of
elementary integrals. namely we have

a

X —Uu
I,=|Cd here C = 0 B.1
2 j W T Bie o+ Bix—By O
and for n = 4 we have
X — uo
C, = (B.2)

2
IT (x* + ax — b)*Bi2
i=1

2

where
a, =yt =y, a, = —p; b, = (K — u¥)2u;
b, = —~(K + p¥)/2u.

Expression (B.2) can be presented in the form of the
following sum:

¢, x +c,

1 cx + ¢,
* O Bi3[x*+ax+b

(x* + a,x + b,)?

CsX + C¢ X + ¢g
x2 4+ ax+b, (x*+a,x + b2)2]' ®3)
Coefficients ¢, can be calculated from the system
{agi{ey =1b} ij=12..8 (B.4)
where
{b}T = {0.0,0,0,0,0,1, —uy};
a, =a,,=1fori=1234;
Q25 =36 = 1 = 03, = I
Qi = G55 = —a4 3= —05, =24

Gy =5, =0ds5 5= a5 =K

‘;5,3 = a5, = (K + 20%)/:

3,1 =8y, = —b,:
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O35 =46 =
a5 =ag, = —(F + Kp);

O 5 = dg ¢ = —F + Kyu;

47,1 = 83,
ag | = a,, = (2Fu’ + K* + Kp®)2p;

ag s = a, o = —(2Fu® + K* — Kp?)2u;

Qg3 =874 = —(K + %)

a. . =a,,=—K+ u*;
= p2-

4,3 =g 4 = b3;

2.
a7, = ag g = by;
and the other terms of the matrix {a,} vanish, and:
K = Bi,/Bi, and F = Biy/Bi,.

Integral I, by use of expression (B.3) can be presented as
follows

1 [(204 —c;a,)4, + c,a; + 2c,b,
B2 ~3(q? +aq, - b))

(2¢c, — cza,)uy + c,a, + 2¢,b,
=06, + au, — b))
(2eg — cja,)q, + cga, + 2¢.b,
—0,(q7 + ayq, ~ b))

(2cq — cja,)u, + cga, + 2¢,b,
—8,(u + au, ~ b,)

q; +a4q, — b,
2

ut +au, —b

+0-5¢, In

1

q; + a4, — b,
2
us + ayu, — b,

+ 0:5¢c;In

+ 8,(cia, — 2¢,) + 4c, ~ 2c,a, In (29, +a, — &%)
~26% (2q, + a, + &%)

(uy + a, + Y| 6,(2c, — csa,) — 2¢4 + cqa,

Qu, + a, — &%) (~3,)F
2q, + 2u, +
X (arctan—ql;—? — arctan L%)]
(=4,) (-9,
where
é, =al +4b: 8, = aZ + 4b,.
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DISTRIBUTION DE TEMPERATURE TRANSITOIRE CALCULEE PAR UNE METHODE
VARIATIONNELLE DANS UNE PLAQUE SOUMISE A UN CHAUFFAGE PAR RAYONNE-
MENT ET CONVECTION

Résumé—On considére la description variationelle du phenoméne de conduction de chaleur. On examine
une application du principle variationel pour un systéme des équations décrivant le phénomeéne, c’est a dire
la loi de Fourier et las loi de conservation d’energie.

La description du phénoméne est completée par la condition déquilibre considérée dans une forme
générale. 11 est einsi possible de considérer les conditions aux limites nonlinéaires.

On a determiné la distribution de temperature dans le cas de conduction de chaleur unidimensionelie en
régime transitoire dans des parois planes chauffes par convection et rayonnement de la chaleur.

On a determiné la distribution de temperature dans le cas de conduction de chaleur unidimensionelle en

régime transitoire dans des parois planes chauffes par convection et rayonnement de la chaleur.

DIE IN STATIONARE TEMPERATURVERTEILUNG IN EINER BESTRAHLTEN UND
KONVEKTIV BEHEIZTEN PLATTE, BERECHNET NACH EINER VARIATIONSMETHODE

Zusammenfassung—Es wird die Anwendung des Variationsprinzips auf Probleme der Wiarmeleitung
betrachtet. Hierbei wird das Variationsprinzip fiir die das System beschreibenden Gleichungen formuliert,
nimlich das Gesetz von Fourier und der Erhaltungssatz der Energie.
Zusitzlich wird eine Bilanzgleichung fiir die Randbedingungen in allgemeiner Form aufgestellt, mit
deren Hilfe man auch nichtlineare Randebedingungen behandeln kann.
Die nichstationire. eindimensionalc Temperaturverteilung in einer Platte wird berechnet mit Wirmeii-
betragung durch Strahlung und Konvektion an ihren Randern.

BAPUAIIOHHBIN METOJ PACYHETA HECTAUUMOHAPHOI'O PACOPEJIEJEHUA
TEMIEPATYP B IUNIUTE IIOJABEPFAEMON JIVUUCTOMY 1
HOHBEHKTUBHOMY HATPEBY

Annoramua—B pafoTe NpPUHAT BAPUALNMOHHBIA IONXOJ K ONUCAHWUIO IIPOIECCA TeIIO-
HpOBoAHOCTH. PaccMaTpuBaeTcA HpUMeHeHHe BAPUALMOHHOTO [IPUHINIA cPOPM YIMPOBAHHOTO
IJIA CHUCTEMBl YPaBHeHUII ONMCHIBAIOINEN TNpPOLECC TEMJIONPOBOJHOCTH, TO €CTh MJIA BAKOHA
Oypbe u 6asaHCca DHEPTHIL.

Ommcanune npolecca AOMOJNHEHO ypaBHeHHMeM (ajlaHca JJIa TPAHWYHBIX YCJOBMI npep-
CTaBJIEHHHIX B 001eit dopme. DopMa 5Ta JaeT TOxe BOBMOMHOCTL pacCMaTpUBAThL HeJlMHeliHEle
IrpaHNYHBIE YCIOBMA.

OnpeneneHo OJHOKROODAMHATHOE PpACHpeJeseHHe TeMIIepaTyphl [ HeCTALMOHADHUIO
pexuMa B IIMTAX, € YYeTOM pajMalliOHHOIO i1 KOHBEKIMOHHOIO TelJooGMeHOB Ha

MOBEPXHOCTH.



